Catalytic Treatment and Clean Energy team (TCEP)

Research activity

The topics of the TCEP team concerns “heterogeneous catalysis applied to the environment and energy“.

Catalysis is being explored for the elimination of air pollutants in harmless products, for the purification and valorization of CO2 and also for the development of alternative solutions for transforming biomass into clean energy. These treatments and valorizations are applied to agricultural, industrial and automotive effluents to provide solutions / prevention at the source.

For all this research, we focus on inexpensive metal oxides and using, if possible, bio-based or natural materials that can be prepared by unconventional pathways (microwaves, ultrasounds …).

At a fundamental level, we use the physico-chemical characterization available “in situ” or “operando” methods (IR, UV-vis, EPR) to refine the current reaction models. In a complementary way, we develop kinetic and transient studies to optimize the efficiency of the processes.

Catalytic Treatment/Purification of Air Pollutants (VOCs, Soot, NOx, CO, PAHs, CO2)

The team focused on the treatment of pollutants taking separately but also for simultaneous emissions of VOCs, NOx, CO, soot. These emissions are a common concern for transport, for many industrialists using high temperature processes and also for the residential sector.

On the other hand, in a current context of development of domestic wood heating for the energy transition, it is necessary to take into consideration the environmental problems associated with it. We are now developing inexpensive transition metal catalyst materials for the simultaneous treatment of CO, VOC and PAH pollutants.

The issue of global warming and more specifically the future of CO2 is a challenge for the future. The capture or use of CO2 for the production of value-added molecules (methane, methanol, etc.) will play an important role in the future, but CO2 sources are generally mixed with other pollutants (NOX, CO2, etc.). ). We are working on catalytic purification of CO2.

Energetic valorization

For energy recovery of CO2, we develop catalysts for the activation of CO2 for methanation.

On the other hand, the management and recovery of household waste is also a considerable economic, environmental and energy issue. Hydrogen is often presented as one of the energetic fuel of the future, and also as the carrierl of fuel cells. Among the approaches proposed for the purpose of producing hydrogen, reforming is a process that makes it possible to valorize biogas and other compounds resulting from the fermentation of waste and to reduce emissions of greenhouse gases. The main problem encountered during catalytic reforming reactions is the deactivation of the catalyst for several reasons related to various mechanisms.

The objectives of this research topic are multiple. By playing on the parameters such as the basicity of the catalysts, the type of active phase, the morphology of metallic particles, we are working on the development of new active and stable catalytic systems for energy recovery of waste in order to contribute to a better understanding of various factors that control the biogas reforming reactions in order to obtain a significant improvement in their stability under a reaction mixture. The impact of the impurities found in biogas has led us to broaden our investigations towards the reforming of VOCs, glycerol and the study of their toxicological impact.

Team members

Scientific collaboration

Nationals :

  • Unité de Catalyse et de Chimie du Solide (Univ. Lille I)
  • Laboratoire de Réactivité de Surface (Univ. Paris VI)
  • Institut de Chimie des milieux et matériaux de Poitiers (Univ. Poitiers)
  • Laboratoire de gestion des risques et environnement (Univ. Haute Alsace)
  • Institut de chimie et procédés pour l’énergie, l’environnement et la santé  (Univ. de Strasbourg)
  • Laboratoire de Sécurité des procédés Chimiques,EA 4704(INSA de Rouen)

Internationals :

  • Institute of Catalysis, Académie bulgare des sciences de Sofia, Bulgarie
  • Laboratoire de Chimie des Matériaux Inorganiques de l’Université de Namur, Belgique
  • Laboratoire de thermodynamique et physique mathématique ; Université de Mons, Belgique
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Laboratory of Living Materials, Wuhan University of Technology, Chine
  • Petroleum Chemistry Key Laboratory – Industrial Chemical Institute Vietnam National University, Vietnam
  • Université Libanaise, Liban
  • Université De Balamand, Liban
  • American University of Beyrouth, Liban
  • Université Saint Esprit à Kaslik, Liban
  • Laboratoire de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, Algérie
  • Department of Applied Physics, Université de Gand (Belgique)
  • Department of Environmental and Chemical Engineering, Université d’Oulu (Finlande)
  • Inorganic Chemistry Department, Université de Séville (Espagne)
  • Université Fédérale da Paraíba, (Brésil)

Current Thesis




Caroline Paris

2021-2024Traitement catalytique des émissions issues de la combustion du bois
Manon Grégoire2021-2024Valorisation catalytique du CO2 via l’hydrogénation pour la production de méthane
Aida YOUNIS2018-2021Valorisation du plastique non recyclé par reformage catalytique en gaz de synthèse

Research agreement

  • 2016-2018 : Innocold Project:”” Oxycombustion by catalytic means / Energy recovery of CO2″ partner: EDF LNG Dunkerque.
  • 2016-2020 : Interreg V France – Wallonie – Vlaanderen : “DepollutAir : Innovative Couplings of Volatile Organic Compounds (VOC) Treatment Techniques: New Ways to Improve Air Quality” project, Lead Partner: UCEIV ; Partners: University of Lille, University of Mons (Belgium), University of Namur (Belgium), University of Ghent (Belgium) + TIM SA and Volvo Cars : Transversal project with the CTEA team.
  • 2018-2019 : IRENE Project: “Exploratory study of a catalytic oxidation process for the remediation of industrial effluents containing oxygenated VOCs”; partner: Ryssen Alcools
  • 2017-2021 : ABIOVAL project: “Biogas energy valorization”; UCEIV carrier; partners: Neo Eco, Ceft Prodeval, Opale Environnement, ADEME, FEDER

Recent publications

  • S. Hany, M. Skaf, S. Aouad, C.Gennequin, M. Labaki, E.Abi-Aad, A. Aboukaïs ; Correlation between the size and the magnetic properties of Ag2+ clusters loaded on ceria surface and their catalytic performance in the total oxidation of propylene. EPR study; Chemical Physics 502, pp 1-5 2018.
  • J. Brunet, E. Genty, C. Barroo, F. Cazier, C. Poupin, S. Siffert, D. Thomas, G. De Weireld, T. Visart de Bocarmé and R. Cousin; The CoAlCeO Mixed Oxide: An Alternative to Palladium-Based Catalysts for Total Oxidation of Industrial VOCs: Catalysts 8 pp 64; 2018, doi:10.3390/catal8020064.
  • Y. Lu, X. Cheng, G. Tian, H. Zhao, L. He, J. Hu, S.-M. Wu, Y. Dong, G.-G. Chang, S. Lenaerts, S. Siffert, G. Van Tendeloo, Z.-Fei Li, L.-L. Xu, X.-Y. Yang, B.-L. Su ; Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability; Nano Energy, 47, pp. 8–17 2018.
  • S. Hany, M. Skaf, S. Aouad, C.Gennequin, M. Labaki, E.Abi-Aad, A. Aboukaïs EPR simulation to confirm the formation of Ag6O5 complex on the surface of 10% Ag/CeO2 catalyst after the propylene oxidation reaction: Chemical Physics Letters 703, pp 94-96 2018.
  • S. Hany, M. Milochova, K. Littrell, R. Lorange, J.-B. Vogt, E. Abi-Aad, E. Bychkov ; Advanced characterization of cryogenic 9Ni steel using synchrotron radiation, neutron scattering and 57Fe Mössbauer spectroscopy; Materials & Design (in press) 2018
  • E. Genty, S. Siffert, R. Cousin, Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst; Catalysis Today (in press) 2018 doi: 10.1016/j.cattod.2018.03.018
  • F. Shen, J. Akil, G. Wang, C. Poupin, R. Cousin, S. Siffert, E. Fertein, T. Nguyen Ba, W. Chen; Real-time monitoring of N2O production in a catalytic reaction process using mid-infrared quantum cascade laser ; Journal of Quantitative Spectroscopy & Radiative Transfer, 221, pp 1–7; 2018.
  • C. Abou Serhal, I. Mallard, C. Poupin, M. Labaki, S. Siffert, R. Cousin, Ultra-quick synthesis of efficient hydrotalcite like compound catalysts for VOCs oxidation; Comptes Rendus chimie 21 Issue 11, pp 993-1000, 2018.
  • E. Genty, S. Siffert, R. Cousin, Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst; Catalysis Today (in press) 2018 doi: 10.1016/j.cattod.2018.03.018
  • E. Genty, H. Dib, J. Brunet, C. Poupin, S. Siffert, R. Cousin, Effect of Ce Addition on MgAl Mixed Oxides for the Total Oxidation of CO and Toluene; Topics in Catalysis (in press), 2018. DOI: 10.1007/s11244-018-1105-0
  • T. Barakat, J.C Rooke, D. Chlala, R. Cousin, J.-F .Lamonier, J.-M .Giraudon, S. Casale, P. Massiani, B.-L. Su, S. Siffert ; Oscillatory behavior of Pd-Au catalysts in toluene total oxidation ; Catalysts 8(12) pp 574; 2018.
  • J.Abou Rached, M.R. Cesario, J. Estephane, H.L. Tidahy, C. Gennequin, S. Aouad,A. Aboukaïs, E. Abi-Aad ; Effects of cerium and lanthanum on Ni-based catalysts for CO2 reforming of toluene ; Journal of Environmental Chemical Engineering 6 pp. 4743-4754; 2018.
  • E.Dahdah, S. Aouad, C. Gennequin, J. Estephane, B. Nsouli, A. Aboukaïs, E. Abi-Aad; Glycerol steam reforming over Ru-Mg-Al hydrotalcite-derived mixed oxides ; Role of the preparation method in catalytic activity ; International Journal of Hydrogen Energy 43 pp. 19864-19872; 2018.
  • M. Al Zallouha, Y. Landkocz, J. Brunet, R. Cousin, E. Genty, D. Courcot, S. Siffert, P. Shirali, S.Billet: Usefulness of toxicological validation of VOCs catalytic degradation by air liquid interface exposure system : Environmental Research 152 ; PP. 328–335 2017.
  • J. Abou Rached, C. El Hayek, E. Dahdah, C.Gennequin, S. Aouad, H.L. Tidahy, J. Estephane, B.Nsouli,A. Aboukaïs, E. Abi-Aad, Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production : International Journal of Hydrogen Energy, 42 (17), pp. 12829-12840 2017.
  • C. Tanios, S. Bsaibes, C. Gennequin, M. Labaki, F. Cazier, S. Billet, H.L.Tidahy, B. Nsouli, A. Aboukaïs, E.Abi-Aad, Syngas production by the CO2 reforming of CH4 over Ni–Co–Mg–Al catalysts obtained from hydrotalcite precursors: International Journal of Hydrogen Energy, 42 (17), pp. 12818-12828. 2017.
  • E. Dahdah, J. Abou Rached, S. Aouad, C. Gennequin, H.L. Tidahy, J. Estephane, B.Nsouli, A. Aboukaïs, E. Abi-Aad, CO2 reforming of methane over NixMg6−xAl2 catalysts: Effect of lanthanum doping on catalytic activity and stability: International Journal of Hydrogen Energy, 42 (17), pp. 12808-12817, 2017.
  • D. Homsi, J. Abou Rached, S.Aouad,C. Gennequin, E. Dahdah, J. Estephane, H.L. Tidahy, A. Aboukaïs, E.Abi-AadSteam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route: Environmental Science and Pollution Research, 24 (11), pp. 9907-9913, 2017.